Accepted paper with abstract, SoCG’09

Francis Y. L. Chin, Zeyu Guo and He Sun

Minimum Manhattan Network is NP-Complete
Given a set T of n points in R^{2}, a network G is said to be a Manhattan network on T, if for all $p, q \in T$ there exists a Manhattan path, consisting of horizontal and vertical line segments, between p and q and all its line segments are in G. For a given network G, let the length of G, denoted by $L(G)$, be the total length of all the segments in G. For a given point set T, the Minimum Manhattan Network Problem is to find a Manhattan network G on T with minimum $L(G)$. Over the past ten years, whether this problem is NP-complete has been open, and there has been a vast amount of research devoted to the designing of approximation algorithms for this problem.

In this paper, we shall prove that this problem is strongly NP-complete, which implies that there does not exist FPTAS algorithms for this problem unless $P=N P$. The reduction is from the well-known 3-SAT problem, relying on six different gadgets in the reduction. The validity of the reduction has been confirmed with a computer program.

